谷歌中国开发者社区 (GDG)
  • 主页
  • 博客
    • Android
    • Design
    • GoogleCloud
    • GoogleMaps
    • GooglePlay
    • Web
  • 社区
    • 各地社区
    • 社区历史
    • GDG介绍
    • 社区通知
  • 视频
  • 资源
    • 资源汇总
    • 精选视频
    • 优酷频道

Leave manual cluster resizing behind with Cloud Dataproc’s autoscaling

2019-11-16adminGoogleCloudNo comments

Source: Leave manual cluster resizing behind with Cloud Dataproc’s autoscaling from Google Cloud

Building real-time, interactive data products with open source data and analytics processing technology is not a trivial task. It involves constantly balancing cluster costs with service-level agreements (SLAs). Whether you are using Apache Hadoop and Spark to build a customer-facing web application or a real-time interactive dashboard for your product team, it’s extremely difficult to handle heavy spikes in traffic from a data and analytics perspective.

We’re pleased to announce Cloud Dataproc’s new autoscaling capabilities, now generally available, that can remove the need for complex capacity planning that always results in either missed SLAs or resources sitting idle.

How can autoscaling help your team?
These new capabilities can help a range of teams, whether data engineers building complex ETL pipelines, data analysts running ad hoc SQL queries, or data scientists training a new model. Cloud Dataproc’s autoscaling capabilities allow cluster admins to build ephemeral or long-standing clusters in 90 seconds and apply an autoscaling policy to the cluster to minimize costs and maximize the user experience without manual intervention. 

Whether you’re part of the team at a technology company building a SaaS application, a telecommunications company analyzing network traffic, or a retailer monitoring clickstream data during the holidays, you no longer have to worry about right-sizing clusters. 

Here’s a look at some common use cases:

autoscaling.png

Core Cloud Dataproc autoscaling capabilities include:

  • Right-sizing your cluster: Estimating the “right” number of cluster workers (nodes) for a workload is difficult, and a single cluster size for an entire pipeline is often not ideal. Don’t worry about manually right-sizing your cluster with autoscaling. 

  • One autoscaling policy, multiple clusters: An autoscaling policy is a reusable configuration that describes how clusters using the autoscaling policy should scale. It defines scaling boundaries, frequency, and aggressiveness to provide fine-grained control over cluster resources throughout the cluster lifetime.

  • Budget optimization: Scale in and scale out clusters while setting limits in the autoscaling policy to make sure you don’t exceed budget. 

  • YARN integration:Autoscaling policies integrate with YARN automatically to trigger VM scaling when needed, so you have one central resource management system for all of your Cloud Dataproc jobs.

  • Monitor autoscaling jobs: Integrate with Stackdriver Monitoring to view the metrics from the autoscaling clusters, view the number of Node Managers in your cluster, and understand why autoscaling did or did not scale your cluster. Use Stackdriver Logging to view autoscaler decisions.

  • Multi-region support: Deploy autoscaling clusters in any region where Cloud Dataproc clusters are running. 

Check out our documentation to access everything you need to get started with Cloud Dataproc autoscaling. Autoscaling is supported through the v1 API on cluster image versions 1.0.99+, 1.1.90+, 1.2.22+, 1.3.0+, and 1.4.0+.

除非特别声明,此文章内容采用知识共享署名 3.0许可,代码示例采用Apache 2.0许可。更多细节请查看我们的服务条款。

Tags: Cloud

Related Articles

Guide: Creating custom base images for GCP with Jenkins and Packer

2019-01-19admin

AI in Depth: Cloud Dataproc meets TensorFlow on YARN: let TonY help you train right in your cluster

2019-01-31admin

Applying the Escalation Policy — CRE life lessons

2018-02-09admin

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code class="" title="" data-url=""> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong> <pre class="" title="" data-url=""> <span class="" title="" data-url="">

Recent Posts

  • Admin Essentials: know your options for Modern Enterprise Browser Management
  • TheVentureCity and Google Consolidate Miami as a Tech Powerhouse
  • Keep a better eye on your Google Cloud environment
  • Using HLL++ to speed up count-distinct in massive datasets
  • Season of Docs Announces Results of 2019 Program

Recent Comments

  • admin on Using advanced Kubernetes autoscaling with Vertical Pod Autoscaler and Node Auto Provisioning
  • Martijn on Using advanced Kubernetes autoscaling with Vertical Pod Autoscaler and Node Auto Provisioning
  • Martijn on Using advanced Kubernetes autoscaling with Vertical Pod Autoscaler and Node Auto Provisioning
  • Chen Zhixiang on Concurrent marking in V8
  • admin on 使用 Android Jetpack 加快应用开发速度

Archives

  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • December 2016
  • November 2016
  • October 2016
  • September 2016
  • August 2016
  • May 2016
  • April 2016
  • March 2016
  • February 2016
  • January 2016
  • December 2015
  • November 2015
  • October 2015
  • September 2015
  • August 2015
  • July 2015
  • June 2015
  • January 1970

Categories

  • Android
  • Design
  • Firebase
  • GoogleCloud
  • GoogleDevFeeds
  • GoogleMaps
  • GooglePlay
  • Google动态
  • iOS
  • Uncategorized
  • VR
  • Web
  • WebMaster
  • 社区
  • 通知

Meta

  • Log in
  • Entries RSS
  • Comments RSS
  • WordPress.org

最新文章

  • Admin Essentials: know your options for Modern Enterprise Browser Management
  • TheVentureCity and Google Consolidate Miami as a Tech Powerhouse
  • Keep a better eye on your Google Cloud environment
  • Using HLL++ to speed up count-distinct in massive datasets
  • Season of Docs Announces Results of 2019 Program
  • Admin Insider: What's new in Chrome Enterprise, Release 79
  • Discover insights from text with AutoML Natural Language, now generally available
  • Introducing Storage Transfer Service for on-premises data
  • How Mynd uses G Suite to manage a flurry of acquisitions
  • W3C Trace Context Specification: What it Means for You

最多查看

  • 如何选择 compileSdkVersion, minSdkVersion 和 targetSdkVersion (25,371)
  • Google 推出的 31 套在线课程 (22,455)
  • 谷歌招聘软件工程师 (22,336)
  • Seti UI 主题: 让你编辑器焕然一新 (13,823)
  • Android Studio 2.0 稳定版 (9,420)
  • Android N 最初预览版:开发者 API 和工具 (8,036)
  • 像 Sublime Text 一样使用 Chrome DevTools (6,323)
  • 用 Google Cloud 打造你的私有免费 Git 仓库 (6,076)
  • Google I/O 2016: Android 演讲视频汇总 (5,608)
  • 面向普通开发者的机器学习应用方案 (5,539)
  • 生还是死?Android 进程优先级详解 (5,228)
  • 面向 Web 开发者的 Sublime Text 插件 (4,341)
  • 适配 Android N 多窗口特性的 5 个要诀 (4,311)
  • 参加 Google I/O Extended,观看 I/O 直播,线下聚会! (3,620)
© 2019 中国谷歌开发者社区 - ChinaGDG